If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=126
We move all terms to the left:
15x^2-(126)=0
a = 15; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·15·(-126)
Δ = 7560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7560}=\sqrt{36*210}=\sqrt{36}*\sqrt{210}=6\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{210}}{2*15}=\frac{0-6\sqrt{210}}{30} =-\frac{6\sqrt{210}}{30} =-\frac{\sqrt{210}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{210}}{2*15}=\frac{0+6\sqrt{210}}{30} =\frac{6\sqrt{210}}{30} =\frac{\sqrt{210}}{5} $
| ((4x+3)/9)-((2x+1)/2)=(1/6) | | 9x+993=1643 | | 8x-2=-x+15 | | −38=5u-3 | | 10x-2(3x-6)=4(4x-6)-8x | | 8-2x=-3x+6 | | -2x2+23x+20=0 | | 3/4n-2=-7/8+4 | | 6m-4=m+1 | | 8-2x=-3x-6 | | 313/4x4+185/6x6=0 | | -3(x+4)15=6-4x | | -4(-3)+y=20 | | T(w)=0.1w^2+2.155w+19.985 | | −38=−5u-3 | | |3x|+4=19 | | 8-2x=3x-6 | | 6y+8y=10 | | 12×n=6 | | 3x+x+(3x+x)-6=180 | | 2x+15=2(x-15)/5 | | A=351/2x21/3 | | 4x+63=0 | | 84-3x=72.75 | | 3x-81=50 | | F(x)=4x+7/x^2+17x+72 | | -5x–3+6x=-6x+3 | | 1.5x+8=-2.5 | | X×7y=-14 | | 50x=4*5+5 | | 4+j+6=40 | | 6a+4a=12+1 |